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‘time-dependent’ (nonstationary) or spatially evolving
turbulence in general

— recovery following re-attachment in backstep flow (T. Gatski)

— boundary layers with change in wall conditions (rough/smooth,
smooth/rough) (Smits and Wood, ARFM (1985); Woodruff and
Nwafor (1992))

— ‘ramp flow' (Rubinstein, Clark, Livescu, Luo, JoT (2004)): tran-
sition between self-similar states.

Such problems present major challenges for modeling.



classic problem: pipe flow with oscillating pressure gradient

VP =VP+VPcos(wt) VP KVP
Ue = U + Uecos(wt + or7)

— Obvious limits: static w ~ 0, frozen w — oo.

(same limits for laminar flow)

— Measured values of amplitude ratio 7/u. and phase shift
or — ¢ (V. Yakhot) were compared to results of linearizing a two-
equation model about the steady solution.
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— Is the ‘static’ model + = CV_(‘?— adequate, or is the time-
e Jy
. € oU
dependent model 7 = —CSET -+ CRa—k preferable?
Y

— Conclusion: there is no significant difference. Model predictions
for 7/u. were good, but ¢, — ¢;; showed much too gradual tran-
sition between static and frozen limits, with either model.
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periodically forced turbulence

* problem introduced by Lohse — possibility of resonant response
in Kinetic energy near critical frequency w o E/E

* closure, shell model, and DNS studies (von der Heydt et al,
Kuczaj et al)

* measurements using periodic grid (van de Water)



problem formulation

Homogeneous isotropic turbulence is forced periodically by
P(r,t) = P(k) + P(r) cos(wt) where P(rk) =cP(x) and ¢ < 1

E(k,t) = E(k) + E(k) cos(wt + ¢p(k))
F(k) = E(k)cos¢p(k) G(k) = E(k)sinop(k)
k(t) =k + kcos(wt + ¢1.) e(t) =€+ €cos(wt + o)

Oscillations characterized by phase averages E,E and
phase shifts ¢;.. ¢e.



General spectral evolution equation for closure
. o 5
E(k,t) = P(k,t) — a—f[E(lﬁl,t)] — 2uk“E(k,t)
K

Spectral time averages satisfy the static balance

0

0= P(r) — —Kf[E(,i)] — 2uk?E(K)

and spectral phase averages satisfy

—w@G(k) = P(r) — L[F(r)] — 2vk2F (k)
—wF(k) = L[G(r)] + 2vk’G(k)

where L is the energy transfer linearized about FE:

clo() = o= (31 (@]



two obvious limits:
1. static limit w — 0 : then ¢, =~ ¢ = O.

2. frozen limit w — oo : then (‘rapid distortion theory’)
~ 1 (oo ~ ~ - —1 [°° 2 7 2 75
k%—/o di P(k) ~ P/lw €~ w /O dk 2vk“P(k) = vkpP /w
w

and ¢ ~ 7w/2(~ ¢7)



T he static and frozen limits show no oscillatory dynamics.

Filtering effect: at asymptotically large w, oscillations are not
transfered to small scales; confined to the production scales.

Interesting properties can exist at intermediate frequencies.
closure studies
1. Simplified closure model studies of ¢;..

2. Periodically forced turbulence simulated over a range of fre-
quencies and Reynolds numbers using EDQNM (PF 2007).



closure studies 1
— Rapid transition of ¢, compared to models (two-equation, ‘LES’):

* We did ‘deterministic LES’ (replace the small scales in closure
with subgrid model based on arguments leading to Smagorinsky)

* 50/500 modes are resolved explicitly; they contain 80% of the
total steady-state energy.

* The phase shift between static and frozen limits is too gradual:
large eddy simulation = slow eddy simulation.
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closure studies 2: modulated dissipation rate
* € shows two limits:
— at fixed Re with w — oo, € ~ vw L.

— at fixed w as Re — oo, € ~ w >,

* ¢ shows complex dependence on both w and Re: peak in ¢
scales roughly as Rel/2.
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corrections to the leading order solution: high w

- - _ 1 -
E(k)cos(op(k)) 0 E(k)sin(¢op(k)) ~ —;P(li).
‘Neumann series’ in powers of /Lw‘l; but this series is divergent.

E(r)cos(¢p(r)) = w 2L[P(x)]
E(x)sin(¢p(x)) = —w 'P(r)+w >L2[P(x)]

The leading order does not depend on nonlinearity. To understand
nonlinear effects, we will analyze a simple model of energy transfer.
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CMSB dgeneralized Heisenberg closure

E(p)20(p)

FIEG) = [ du 1B [~ dp B@OW)~ [ du® [~ dp =P

where 0(x) = [°E(x)]"1/2. (Rubinstein and Clark, TCFD: com-
pare to Canuto-Dubovikov model)

In the linearized transfer for this model, £[P] o« P always holds,

~ E(/ﬁ}) R 2 ~ :
except for the term Ly [P(r)] = 3 /o dp p=P(p). This term
K

permits the oscillations to extend to all scales of motion: its
contribution is subdominant in w.
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We find

1 :
- o= w~ v Re fixed, w — o0
€ ~v Pli%{

w3 w fixed, Re — o0

in agreement with computations.

Note elegant scaling argument based on properties of distant in-
teractions (W. Bos).
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conclusions

— Periodically forced turbulence provides an interesting viewpoint
on (statistically) unsteady properties. Unsteadiness is ‘frozen’ in time.

* Too slow phase growth of ¢, : comparable to pipe flow?

* Distant interactions cause € ~ w > and

* strong Reynolds number dependence of ¢..

— Reynolds number dependence of small scale dynamics in turbu-
lent transients may have implications for LES.
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