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‘time-dependent’ (nonstationary) or spatially evolving

turbulence in general

– recovery following re-attachment in backstep flow (T. Gatski)

– boundary layers with change in wall conditions (rough/smooth,

smooth/rough) (Smits and Wood, ARFM (1985); Woodruff and

Nwafor (1992))

– ‘ramp flow’ (Rubinstein, Clark, Livescu, Luo, JoT (2004)): tran-

sition between self-similar states.

Such problems present major challenges for modeling.
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classic problem: pipe flow with oscillating pressure gradient

∇P = ∇P̄ + ∇P̃ cos(ωt) ∇P̃ � ∇P̄

τw = τ̄w + τ̃w cos(ωt + φτ)

Uc = Ūc + Ũc cos(ωt + φU)

– Obvious limits: static ω ≈ 0, frozen ω → ∞.

(same limits for laminar flow)

– Measured values of amplitude ratio τ̃/ũc and phase shift

φτ −φU (V. Yakhot) were compared to results of linearizing a two-

equation model about the steady solution.
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– Is the ‘static’ model τ = Cν
k2

ε

∂U

∂y
adequate, or is the time-

dependent model τ̇ = −CS
ε

k
τ + CR

∂U

∂y
k preferable?

– Conclusion: there is no significant difference. Model predictions

for τ̃/ũc were good, but φτ − φU showed much too gradual tran-

sition between static and frozen limits, with either model.
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periodically forced turbulence

* problem introduced by Lohse – possibility of resonant response

in kinetic energy near critical frequency ω̄ ∝ ε̄/k̄

* closure, shell model, and DNS studies (von der Heydt et al,

Kuczaj et al)

* measurements using periodic grid (van de Water)
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problem formulation

Homogeneous isotropic turbulence is forced periodically by

P (κ, t) = P̄ (κ) + P̃ (κ) cos(ωt) where P̃ (κ) = εP̄ (κ) and ε � 1

E(κ, t) = Ē(κ) + Ẽ(κ) cos(ωt + φE(κ))

F̃ (κ) = Ẽ(κ) cosφE(κ) G̃(κ) = Ẽ(κ) sinφE(κ)

k(t) = k̄ + k̃ cos(ωt + φk) ε(t) = ε̄ + ε̃ cos(ωt + φε)

Oscillations characterized by phase averages k̃, ε̃ and

phase shifts φk, φε.

6



General spectral evolution equation for closure

Ė(κ, t) = P (κ, t) −
∂

∂κ
F[E(κ, t)] − 2νκ2E(κ, t)

Spectral time averages satisfy the static balance

0 = P̄ (κ) −
∂

∂κ
F[Ē(κ)] − 2νκ2Ē(κ)

and spectral phase averages satisfy

−ωG̃(κ) = P̃ (κ) −L[F̃ (κ)] − 2νκ2F̃ (κ)

−ωF̃ (κ) = L[G̃(κ)] + 2νκ2G̃(κ)

where L is the energy transfer linearized about Ē:

L[Φ(κ)] =
∂

∂κ

(

δF

δE

)

Ē
[Φ(κ)]
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two obvious limits:

1. static limit ω → 0 : then φk ≈ φε ≈ 0.

2. frozen limit ω → ∞ : then (‘rapid distortion theory’)

k̃ ≈
1

ω

∫

∞

0
dκ P̃ (κ) ≈ P̃ /ω ε̃ ≈ ω−1

∫

∞

0
dκ 2νκ2P̃ (κ) ≈ νκ2

P P̃ /ω

and φk ≈ π/2(≈ φε?)
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The static and frozen limits show no oscillatory dynamics.

Filtering effect: at asymptotically large ω, oscillations are not

transfered to small scales; confined to the production scales.

Interesting properties can exist at intermediate frequencies.

closure studies

1. Simplified closure model studies of φk.

2. Periodically forced turbulence simulated over a range of fre-

quencies and Reynolds numbers using EDQNM (PF 2007).
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closure studies 1

– Rapid transition of φk compared to models (two-equation, ‘LES’):

* We did ‘deterministic LES’ (replace the small scales in closure

with subgrid model based on arguments leading to Smagorinsky)

* 50/500 modes are resolved explicitly; they contain 80% of the

total steady-state energy.

* The phase shift between static and frozen limits is too gradual:

large eddy simulation = slow eddy simulation.
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closure studies 2: modulated dissipation rate

* ε̃ shows two limits:

– at fixed Re with ω → ∞, ε̃ ∼ νω−1.

– at fixed ω as Re → ∞, ε̃ ∼ ω−3.

* φε shows complex dependence on both ω and Re: peak in φε

scales roughly as Re1/2.
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corrections to the leading order solution: high ω

Ẽ(κ) cos(φE(κ)) ≈ 0 Ẽ(κ) sin(φE(κ)) ≈ −
1

ω
P̃ (κ).

‘Neumann series’ in powers of Lω−1; but this series is divergent.

Ẽ(κ) cos(φE(κ)) = ω−2
L[P̃ (κ)]

Ẽ(κ) sin(φE(κ)) = −ω−1P̃ (κ)+ω−3
L

2[P̃ (κ)]

The leading order does not depend on nonlinearity. To understand

nonlinear effects, we will analyze a simple model of energy transfer.
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CMSB generalized Heisenberg closure

F[E(κ)] =

∫ κ

0
dµ µ2E(µ)

∫

∞

κ
dp E(p)θ(p)−

∫ κ

0
dµ µ4

∫

∞

κ
dp

E(p)2θ(p)

p2

where θ(κ) = [κ3E(κ)]−1/2. (Rubinstein and Clark, TCFD: com-

pare to Canuto-Dubovikov model)

In the linearized transfer for this model, L[P̃ ] ∝ P̃ always holds,

except for the term LNL[P̃ (κ)] =

√

Ē(κ)

κ3

∫ κ

0
dµ µ2P̃ (µ). This term

permits the oscillations to extend to all scales of motion: its

contribution is subdominant in ω.
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We find

ε̃ ∼ P̃ κ2
P

{

ω−1ν Re fixed, ω → ∞

ω−3ε̄ ω fixed, Re → ∞

in agreement with computations.

Note elegant scaling argument based on properties of distant in-

teractions (W. Bos).

14



conclusions

– Periodically forced turbulence provides an interesting viewpoint

on (statistically) unsteady properties. Unsteadiness is ‘frozen’ in time.

* Too slow phase growth of φk : comparable to pipe flow?

* Distant interactions cause ε̃ ∼ ω−3 and

* strong Reynolds number dependence of φε.

– Reynolds number dependence of small scale dynamics in turbu-

lent transients may have implications for LES.
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