Transition to turbulence in channel
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MHD flow with spanwise magnetic field
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Question:

How does the transition to turbulence
occur in the presence of a spanwise
magnetic field?

Stability of shear flows

Poiseuille flow:

Amplitude of perturbation

Rec Re Reynolds number

Globally stable (initial growth of perturbations is possible)
Conditionally stable: initial growth, then asymptotic decay
Conditionally unstable: instability will occur

Linearly unstable

Transition scenario (non-MHD case)

= Basic flow + 2D streamwise vortices (optimal
disturbance: strong growth for finite time)

= At time £, of maximum growth: impose small
3D random perturbation

= Route to transition:

Streak breakdown

2D streamwise Evolution into = 3D random
leads to transition

vortices streaks perturbations

(streak breakdown, Henningson, Reddy, Schmid)




Governing equations

In linearized problem solutions are Fourier modes with respect to
homogeneous directions x and y -> streamwise and spanwise
wavenumbers a and

Linear problem formulation

Linear evolution equations formulated for the following variables:
n - vertical vorticity, w — vertical velocity, ® — electric potential
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perturbation energy E(t) — Jl.(|DW|2 + k2|W|2)dZ + '82 Re 2 Jl.|l7|2dZ

G(t,a,B,Ha,Re) = max |E(t)|/|E(0)],
M (t, Ha, Re) =sup|G(t,a',,8,Ha,Re)|
a8

Energy amplification

Optimal streamwise vortices: damping of transient
growth by magnetic field
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Energy amplification K/I vs. Ha for Optimal spanwise wave;;umber Lvs. Ha for
Reynolds numbers Re = 3000 and 5000 Reynolds numbers Re = 3000 and 5000
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Arguments for the scaling of streamwise vortices

| Linear results yield: Myeam =Ha?and B eam =Ha? for 5 < Ha < 100 |
New scaled variables: t' =t/Re, 7' =n/(fRe),W =w, @' =d/Re
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Squire equation is responsible for the energy amplification — as in ordinary hydrodynamics
= Mgyeam(B Ha, Re) = B2 oo RE?F(R), R=%cam Ha? and F(R) is the amplification given by:

Let F(R) have a maximum at R = R,
and decrease as
1/RPwithp>1forR - 0O

= Three possible cases

1. If Potream = 1/Ha"with n > 1 then: R - 0 and M,zpam — Re?/Ha?" F(0)

2. If Petream = 1/Ha"with 0 < n < 1 then: R - 0 and Meam = R€? Ftream F(R - 0) << Re?/Ha?
= decreases faster than 1/Ha?

3. If Petream = 1/Hathen: R = const and Menm = R F(R.) Re?/Ha?
= hypothesis 3 is correct since it results in the observed scaling




Streamwise vortices: damping and scaling General case: perturbations of arbitrary orientation

2.0e-3
15e3 [
8
g
= Ha=10: Re=5000 ——
= Re=3000 M s 8
5 1oe3 3 2
a1l Ha=20: Re=5000 e <
S Re=3000 @
©
£
o
=4
5.0e-4 E
00 1 2 3 4 00 1 2 3 4
alpha alpha
ok . . . . . . . _ _ _ _
0 0.01 002 003 004 005 006 007 Ha = 10 & Re =5000 Ha =50 & Re =5000
Normalized time
Energy amplification M vs. time T for Re = 3000 & 5000 and Ha = 10 & 20: Isolevels of energy amplification M (a, B T) in the entire (a, f domain
in rescaled units nearly collapse into one curve
wavenumbers vs. time 7 and Ha at Re = 5000
Energy amplification M for global and streamwise optimal modes 10000 Maﬁmggeﬂw; ,,,,, =
liot(Re=5000) —a—
- e - [ N Sy 1000 e
. il R
5 E 100
" £
| g 3 10
100 1 =
me . me | me ) or L . .
Optimal wavenumbers (a, A for global and streamwise modes N Ha
b SR - e No field Ha = 30...50 Ha > 100
v, {((
‘ , r
* L X
Ha =10 Ha =50 Ha = 100
y




Superposition of optimal oblique modes as
transition scenario

Frame 001 | 21 Jul 2006 | Velocity fluctuations

Optimal (a, f/ mode and its symmetric (-a, f
counterpart provide the same linear growth
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Non-linear interaction of superimposed
oblique modes as a source of instability
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Transition at high Hartmann numbers (Ha = 100)

At high Ha purely 2D Orr-modes (a #0, = 0) become
optimal: no interaction with spanwise magnetic field
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Evolution of Orr-modes at Re = 5000 and Ha = 100

(1) If no noise added: flow remains purely 2D
(2) 3D noise: triggers re-laminarization — Joule
dissipation drains energy from 2D modes

Flow re-laminarization and return to unperturbed
state triggered by 3D noise. Re = 5000 and Ha = 100,
iso-surfaces of streamwise velocity perturbations

Stability thresholds for initial energy of optimal
perturbations £(0) versus Ha
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Dominant modes Critical Hartmann number Ha, in
the range =20 ... 30 (depending on

spanwise domain size)

(oblique or streamwise)

Summary and outlook

Summary:
= streamwise modes strongly damped by magnetic field

= highest energy amplification for larger Ha for oblique modes

= obligue modes align with B as Ha increases

= superposition of symmetric oblique modes favorable for transition
= relaminarization of 2d time-dependent flow at high Ha

Things to do:
= classification of oblique modes

= transition studies with high aspect ratios
= comparison with experiments?
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