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Motivation
I Magnetic fields associated to astrophysical and

geophysical bodies are due to electrically conducting
fluids (plasmas)

I The magnetohydrodynamic (MHD) approximation
describes the dynamics of plasmas with small
characteristic flow velocity

I A simplified version of Maxwell equations and the
Navier-Stokes can be used to simulate these plasmas

I Accurate simulations for geo- and astrophysical parameter
values are close to impossible

I limited cpu power → inadequate temporal resolution
I limited physical memory → inadequate spatial resolution

I Since no analytic solutions are known, a semi-analytic
approach seems reasonable



Motivation
I Magnetic fields associated to astrophysical and

geophysical bodies are due to electrically conducting
fluids (plasmas)

I The magnetohydrodynamic (MHD) approximation
describes the dynamics of plasmas with small
characteristic flow velocity

I A simplified version of Maxwell equations and the
Navier-Stokes can be used to simulate these plasmas

I Accurate simulations for geo- and astrophysical parameter
values are close to impossible

I limited cpu power → inadequate temporal resolution
I limited physical memory → inadequate spatial resolution

I Since no analytic solutions are known, a semi-analytic
approach seems reasonable



Motivation
I Eddy viscosity is used to model the dynamics of eddies in

turbulent flows, in the same way that molecular viscosity
is used to model molecular dynamics.

∂tV = V × (∂ × V)− ∂p + ν∂2V

I In a naive approximation eddy viscosity is a scalar
parameter containing the short-scale details, whose value
can be obtained empirically.

∂tVL = VL × (∂ × VL)− ∂pL + νe∂
2VL

I Multiscale analysis can be used to model eddy viscosity:
I large scales can be solved analytically, but the solutions

depend on short-scales
I the general solution of short-scales requires numerical

methods
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Motivation

Is it possible to extend these notions
to Convective Hydromagnetic (CHM)

systems?

I The velocity field obeys the Navier-Stokes equation with Lorentz
force

I Convection is taken into account within the Boussinesq
approximation

I More realistic boundary conditions are considered – horizontal layer

Is it possible to apply multiscale analysis to
these systems?

Is it possible to find negative eddy diffusivity
leading to the increase of magnetic field?
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Equations describing a CHM System
I Navier-Stokes equation + Lorentz force + buoyancy force

∂tV = V × (∂ × V)− ∂p + ν∂2V

− 1
ρ0µ0

B× (∂ × B)−α(T − T0)G + FV,

I Induction equation

∂tB = ∂ × (V × B) + η∂2B + FB

I Heat transfer equation (with Joule term)

∂t T = −(V · ∂)T + k∂2T+
η

cρ0µ0
|∂ × B|2 + F T

I Solenoidality conditions

∂ · V = 0 ∂ · B = 0
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Boundary conditions

I Horizontal layer [0, L1]× [0, L2]× [0, L3]

I Periodicity in horizontal directions (x1 and x2)
I Boundary conditions along x3:

Velocity: V3|x3=0,L3

= 0

∂3V1|x3=0,L3

= ∂3V2|x3=0,L3

= 0

Magnetic Field: B3|x3=0,L3

= 0

∂3B1|x3=0,L3

= ∂3B2|x3=0,L3

= 0

Temperature: T|x3=0
= T1

T|x3=L3
= T2



Basic equations

Change of variable:

T  θ : θ(x3 = 0, π) = 0 ⇒ T (θ) = θ + T1 + δTx3; δT = T2 − T18>>>><>>>>:
∂tV − V × (∂ × V) = −∂p + ν∂2V − B × (∂ × B)− α(θ − θ0)G + F
∂ · V = 0
∂tB = ∂ × (V × B) + η∂2B + R
∂ · B = 0
∂tTθ + (V · ∂)θ + δTV3 = k∂2θ + σ

2 |∂ × B|2 + S

The velocity advection term has been replaced by it curl representation and the
remaining gradient included in the pressure term (modified pressure)



Symmetries
I Parity-invariance(vector or scalar field f):

Parity-invariant Parity-anti-invariant

f(−x) = −f(x) f(−x) = f(x)

I Symmetry about x3 axis(scalar field s):

Symmetric Anti-symmetric

s(−x1,−x2, x3) = s(x1, x2, x3) s(−x1,−x2, x3) = −s(x1, x2, x3)

I Symmetry about x3 axis(vector field Q):

Symmetric Anti-symmetric

Q1(−x1,−x2, x3) = −Q1(x1, x2, x3) Q1(−x1,−x2, x3) = Q1(x1, x2, x3)

Q2(−x1,−x2, x3) = −Q2(x1, x2, x3) Q2(−x1,−x2, x3) = Q2(x1, x2, x3)

Q3(−x1,−x2, x3) = Q3(x1, x2, x3) Q3(−x1,−x2, x3) = −Q3(x1, x2, x3)
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Symmetries consistent with the basic equations
I V and B parity-invariant

I Navier-Stokes equation ⇒ p parity-anti invariant and θ
parity-invariant

I Heat equation ⇒ ohmic dissipation term must be
neglected (σ = 0)

I V and B are symmetric about x3 axis
I Heat equation with ohmic dissipation (σ 6= 0) ⇒ θ must

be a symmetric scalar field
I Navier-Stokes equation ⇒ p must be a symmetric scalar

field and G = (0, 0,−g)

I Anti-symmetric fields are inconsistent with the basic
equations.

I The set of fields p, V, B, θ is called symmetric if it
satisfies one of the symmetries defined above, and
anti-symmetric if it satisfies the opposite symmetry.
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Multiscale Analysis
I Consider small perturbations to steady state solutions and

obtain the linearised equations
I Consider new spatial (X) and temporal (tL) variables,

describing large-scale dynamics

X = εx tL = εLt
I Assume that the fields depend on both fast (x, t) and

slow (X, tL) variables, as independent variables

I Expand the fields and derivatives in power series in the
scaling parameters (ε, εT )

I Equate the terms in powers of ε and εT to obtain an
hierarchy of equations

I The equations in this hierarchy control the short-scale
behaviour

I The solvability conditions control the large-scale
behaviour
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Linearisation for a small perturbation

I Steady state solution of the CHM system: p̃, Ṽ, B̃, θ̃

I Small perturbations: peλt , Veλt , Beλt , θeλt

I p → p̃+peλt , V → Ṽ+Veλt , B → B̃+Beλt , θ → θ̃+θeλt

8>>>><>>>>:
ν∂2V + Ṽ × (∂ × V) + V × (∂ × Ṽ)− B̃ × (∂ × B)− B × (∂ × B̃)− αGθ = λV + ∂p,

−∂ × (B̃ × V) + η∂B2 + ∂ × (Ṽ × B) = λB,

−(V · ∂)θ̃ − δTV3 + σ(∂ × B̃) · (∂ × B) + k∂2θ − (Ṽ · ∂)θ = λθ,
∂ · V = 0,
∂ · B = 0.

I λ is the growth rate of perturbations



Block Notation (Dubrulle & Frisch)


AW = λW +

 ∂p
0
0


∂ · V = 0
∂ · B = 0

W =

 V
B
θ



A =

24 ν∂2 + Ṽ × (∂ × •)− (∂ × Ṽ)× −B̃ × (∂ × •) + (∂ × B̃)× −αG
−∂ × (B̃ × •) η∂2 + ∂ × (Ṽ × •) 0

−(• · ∂)θ̃ − δTe3· σ(∂ × B̃) · (∂ × •) k∂2 − Ṽ · ∂

35

I A preserves the symmetry of both symmetric and
antisymmetric fields.



The two-scales expansion

I Introduce large scale or slow variables (X = εx) in the
horizontal directions

I Assume W = W(x, X) and p = p(x, X)

I Expand W, p and λ in a power series of ε:

W = W(0) + εW(1) + ε2W(2) + · · ·+ εnW(n) + O(εn+1)

p = p(0) + εp(1) + ε2p(2) + · · ·+ εnp(n) + O(εn+1)

λ = λ0 + ελ1 + ε2λ2 + · · ·+ εnλn + O(εn+1)

I Derivatives ∂i in A must be replaced by ∂i + ε∇i

(∇i = ∂
∂Xi

), hence A = A(0) + εA(1) + ε2A(2)



The two-scales expansion

A(0) =

24 ν∂2 + Ṽ × (∂ × •)− (∂ × Ṽ)× −B̃ × (∂ × •) + (∂ × B̃)× −αG
−∂ × (B̃ × •) η∂2 + ∂ × (Ṽ × •) 0

−(• · ∂)θ̃ − δTe3· σ(∂ × B̃) · (∂ × •) k∂2 − Ṽ · ∂

35 ≡ A

A(1) =

24 2ν∂ · ∇+ Ṽ × (∇× •) −B̃ × (∇× •) 0
−∇× (B̃ × •) 2η∂ · ∇+∇× (Ṽ × •) 0

0 σ(∂ × B̃) · (∇× •) 2k∂ · ∇ − Ṽ · ∇

35

A(2) =

24 ν∇2 0 0
0 η∇2 0
0 0 k∇2

35 = Ξ∇2, Ξ =

24 ν 0 0
0 η 0
0 0 k

35

I A(0) and A(2) preserve the symmetries of both symmetric
and anti-symmetric fields

I A(1) exchanges the symmetry of both symmetric and
anti-symmetric fields, since∇3 = 0



Hierarchy of Equations

order 0 : A(0)W(0) = λ0W(0) +

 ∂p(0)

0
0


∂ · V(0) = 0
∂ · B(0) = 0

order 1: A(0)W(1) = −A(1)W(0)

+λ0W(1) + λ1W(0) +

 ∂p(1) +∇p(0)

0
0


∂ · V(1) +∇ · V(0) = 0
∂ · B(1) +∇ · B(0) = 0



Hierarchy of Equations

order 2: A(0)W(2) = −A(1)W(1) − A(2)W(0)

+λ0W(2) + λ1W(1) + λ2W(0) +

 ∂p(2) +∇p(1)

0
0


∂ · V(2) +∇ · V(1) = 0
∂ · B(2) +∇ · B(1) = 0
...

order n : A(0)W(n) = −A(1)W(n−1) − A(2)W(n−2)

+
n∑

i=0

λiW(n−i) +

 ∂p(n) +∇p(n−1)

0
0


∂ · V(n) +∇ · V(n−1) = 0
∂ · B(n) +∇ · B(n−1) = 0



Large-scale fields

I Let F = F(x, X) and G = G(x, X) be scalar or vector
fields:

I The average over fast variables (x), 〈F〉 = 1
V

∫
V F dV,

depends only on slow variables (X)
I 〈F〉 is called the large-scale component of the field F

I The fluctuation of the field F, {F}
def
= F− 〈F〉,

depends both on fast and slow variables
I The L2 scalar product, 〈F, G〉 =

∫
V F∗ · G dV, depends

only on slow variables (X)

I The large-scale components of V(n) and B(n) are
solenoidal with respect to large scale variables:

∇ · 〈V(n)〉 = 0 ∇ · 〈B(n)〉 = 0
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General remarks on solvability

I Problems to solve:

PA(0)PF = PG

I Projection operator:

P

24 QV

QB

Qθ

35 =

24 QV − ∂QVp

QB − ∂QHp

Qθ

35 , ∂2QVp = ∂·
“

A(0)Q
”V

, ∂2QHp = ∂·
“

A(0)Q
”H

,

I Solvability: a solution F exists if and only if G is
orthogonal to ker

(
PA(0)P

)∗
(

PA(0)P
)∗

= PA(0)∗P

A(0)∗ =

2664
ν∂2 − ∂ × (Ṽ × •) + (∂ × Ṽ)× B̃ × (∂ × •) −e3δT − (∂θ̃)

∂ × (B̃ × •) − (∂ × B̃)× η∂2 − Ṽ × (∂ × •) σ∂ × (∂ × B̃)

−σ(∂ × B̃) × (∂•)

αG· 0 k∂2 + Ṽ · ∂

3775
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Solution at order 0
I

〈
A(0)W(0)

〉
= 0 (integration by parts and boundary

conditions). Hence:
I λ0 = 0 (seeking solutions with 〈V(0)〉 and 〈B(0)〉 not

vanishing simultaneously)

I Problem at order 0

A(0)W(0) =

 ∂p(0)

0
0


I By linearity:

W(0) =
m∑

i=1

aiSi

p(0) =
m∑

i=1

aiSp
i ; m = dim(kerA(0))



Solution at order 0


A(0)Si =

 ∂Sp
i

0
0


∂ · SV

i = 0
∂ · SB

i = 0

; Si =

 SV
i

SB
i

Sθ
i



∂2Sp
i = ∂ ·

(
A(0)Si

)V

I Split Si into average plus fluctuation
I A(0) invertible in the subspace of mean-free fields ⇒ the

kernel must have a non-vanishing average part
I Boundary conditions ⇒ only components V1, V2, H1, H2

can have non-vanishing average parts ⇒ m = 4



Auxiliary problems at order 0

〈S1〉 =

24 e1
0
0

35 , 〈S2〉 =

24 e2
0
0

35 , 〈S3〉 =

24 0
e1
0

35 , 〈S4〉 =

24 0
e2
0

35

P

0BBBB@A(0){S1} +

266664
24 0

∂2Ṽ1 − ∂1Ṽ2
∂3Ṽ1 − ∂1Ṽ3

35
−∂1B̃
−∂1θ̃

377775
1CCCCA = 0 P

0BBBB@A(0){S2} +

266664
24 ∂1Ṽ2 − ∂2Ṽ1

0
∂3Ṽ2 − ∂2Ṽ3

35
−∂2B̃
−∂2θ̃

377775
1CCCCA = 0

P

0BBBB@A(0){S3} +

266664
24 0

∂1H̃2 − ∂2H̃1
∂1H̃3 − ∂3Ṽ1

35
−∂1Ṽ

0

377775
1CCCCA = 0 P

0BBBB@A(0){S4} +

266664
24 ∂2H̃1 − ∂1H̃2

0
∂2H̃3 − ∂3H̃2

35
−∂2Ṽ

0

377775
1CCCCA = 0



Solution at order 1

I
〈
A(0)W(1)

〉
=

〈
A(1)W(0)

〉
= 0 (integration by parts and

boundary conditions). Hence:
I λ1 = 0 (seeking solutions with 〈V(0)〉 and 〈B(0)〉 not

vanishing simultaneously)
I 〈p(0)〉 = 0

I Problem at order 1

A(0)W(1) = −A(1)W(0) +

24 ∇p(0)

0
0

35+

24 ∂p(1)

0
0

35
=

mX
i=1

2X
j=1

Mĳ∇jαi +

24 ∂p(1)

0
0

35 ; Mĳ = −Bj Si +

24 ej S
p
i

0
0

35

Bj =

264 2ν∂j + ej Ṽ · • − Ṽj −ej B̃ · •+ H̃j 0
−B̃ej · •+ H̃j 2η∂j + Ṽej · • − Ṽj 0
0 σ

P3
k=1

“
∂j H̃k − ∂k H̃j

”
ek · 2k∂j − Ṽj

375 .



Solution at order 1
I By linearity:

W(1) =
m∑

i=1

2∑
j=1

∇jaiΓĳ +
m∑

i=1

biSi

p(1) =
m∑

i=1

2∑
j=1

∇jaiΓ
p
ĳ +

m∑
i=1

biSp
i


A(0)Γĳ = Mĳ +

 ∂Γp
ĳ

0
0


∂ · ΓV

ĳ = −
(
SV

i

)
j

∂ · ΓB
ĳ = −

(
SB

i

)
j

;Γĳ =

 ΓV
ĳ

ΓB
ĳ

Γθ
ĳ



∂2Γp
ĳ = ∂ ·

(
Mĳ + A(0)Γĳ

)V



Auxiliary problems at order 1

I 8 auxiliary problems at order 1:

PΓ′ĳ = P

Mĳ − A(0)

 ∂ΠV
ĳ

∂ΠB
ĳ

0

 , i = 1, . . . , 4, j = 1, 2

Γĳ = Γ′ĳ +

 ∂ΠV
ĳ

∂ΠB
ĳ

0

 ,

∂2ΠV
ĳ = −

(
SV

i

)
j , ∂2ΠB

ĳ = −
(
SB

i

)
j .



Solvability at order 2 - closed equations for W(0)

I Orthogonality to ker PA(0)∗P: for any Cl ∈ ker PA(0)∗P,

λ2

4X
i=1

δli ai +
4X

i=1

2X
j,k=1

〈Cl ,−ΞSi δjk − BkΓĳ 〉∇k∇j ai + 〈CV
l ,∇〈p(1)〉〉 = 0

I Second order equation with constant coefficients →
admits Fourier harmonics as solutions

ai(X) = âi(q)e iq·X; q arbitrary wave vector
I Eigenvalue equation for Fourier modes (4x4 eigenvalue

problem):

λ2

2664
â1 + ν
â2 + ν
â3 + η
â4 + η

3775+ E

2664
â1
â2
â3
â4

3775 = −i p̂(q)

2664
q1
q2
0
0

3775
â1q1 + â2q2 = 0

â3q1 + â4q2 = 0

Eli =
2X

j,k=1

qk qj 〈Cl ,−BkΓĳ 〉



The large-scale eigenvalue equation
»

(λ2 + ν)â′1
(λ2 + η)â′2

–
+ E′

»
â′1
â′2

–
= 0

with
E′11 = E11q2

2 − (E12 + E21)q1q2 + E22q2
1 ,

E′12 = E13q2
2 − (E14 + E23)q1q2 + E24q2

1 ,

E′21 = E31q2
2 − (E32 + E41)q1q2 + E42q2

1 ,

E′22 = E33q2
2 − (E34 + E43)q1q2 + E44q2

1 .

q = (cos ϑ, sin ϑ), ϑ ∈ [0, 2π] ⇒ λ±2 (ϑ) = −
b
2

 
1 ∓

r
1 −

4c
b2

!
,

b = ν + η + E ′
11 + E ′

22, c = νη + νE ′
22 + ηE ′

11 + E ′
11E ′

22 − E ′
12E ′

21

λmax
2 = max

ϑ∈[0,2π]
max

n
λ+

2 (ϑ), λ−2 (ϑ)
o

(1)

λmin
2 = min

ϑ∈[0,2π]
min

n
λ+

2 (ϑ), λ−2 (ϑ)
o

(2)



Numerical Procedure
I Evaluate AW via Spectral methods:

f (x , y , z) =
∑

nkx nky nkz

f̂ (kx , ky , kz)ei(kx x+ky y)

∣∣∣∣ sin(kzz)
cos(kzz)

∣∣∣∣ ,

with kx = 2π
L1

nkx , ky = 2π
L2

nky , kz = π
L3

nkz .
I In the Fourier space derivatives are replaced by

multiplication with the wave vectors
I Products are evaluated in the real space (Pseudo-Spectral

methods)

I Short-scale Stability
I Find the dominant eigenvalue of AW using an algorithm

based on Arnoldi’s method.
I Large-scale Stability

I Solve AW = g (for each auxiliary problem), using, for
instance the conjugate gradients method.

I Evaluate E, E′ and maximise λ2 numerically as a
function of q.
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Generating basic steady state fields

I Fourier coefficients are randomly generated (boundary
conditions are enforced by the choice of basis).

I Symmetry conditions are applied and the gradient of
vector fields removed.

I The fields are normalised to have decaying spectra:
I Algebraic: E (k) ∼ k−β

I Exponential: E (k) ∼ exp(−βk)

I The fields are normalised to have a root mean square
average of 1.



Example of generated steady state fields: algebraic
spectra

Steady state velocity Steady state magnetic field

Steady state temperature Steady state energy spectra



S1: algebraic spectra

Steady state velocity Steady state magnetic field

Steady state temperature Steady state energy spectra



Γ11: algebraic spectra

Steady state velocity Steady state magnetic field

Steady state temperature Steady state energy spectra



Example of generated steady state fields:
exponential spectra

Steady state velocity Steady state magnetic field

Steady state temperature Steady state energy spectra



S1: exponential spectra

Steady state velocity Steady state magnetic field

Steady state temperature Steady state energy spectra



Γ11: exponential spectra

Steady state velocity Steady state magnetic field

Steady state temperature Steady state energy spectra



Results
I Physical dimensions: L1 = 2π, L2 = 2π and L3 = π.
I Numerical grid: 32× 32× 16.
I Basic fields: randomly generated with decaying algebraic

spectra (β = 4, 0 ≤ k < 5 ) and symmetry about the
z − axis.

I Physical parameters: ν = 0.5, η = 0.3 and
k = 0.5,α = 1, g = −1, δT = −1 and σ = 0.

Algebraic Spectra Exponential Spectra
λmin

2 −1.165 −1.165
θmin 3.593 0.4511
λmax

2 1.426 1.426
θmax 3.392 3.392

λshort(S) −0.5662 −0.56623
λshort(A) −0.05175 −0.05638 + 0.04912 i



Abundance of Negative Eddy Diffusivities

Figure: Statistics of growth rates for algebraic spectra: 11%
positive values.



Abundance of Negative Eddy Diffusivities

Figure: Statistics of growth rates (opposite of eddy diffusivity) for
exponential spectra: 13% positive values.



Growth Rates as a function of Molecular
Diffusivities

Figure: Algebraic spectra.



Growth Rates as a function of Molecular
Diffusivities

Figure: Exponential spectra.



Summary
I It was possible to derive an equation for large-scale

dominant modes of a CHM system, decoupling short and
large-scale behaviour.

I Symmetries are important to eliminate first order effects
I Multiscale analysis of rotation is not straightforward

I A code has been developed in C++ to solve the auxiliary
problems and maximise λ2.

I Code tested against the results of asymptotic expansions
for large molecular diffusivities.

I Basic states: randomly generated fields with decaying
energy spectrum, satisfying the required symmetries:
only a statistical study is possible.

I There are short-scale stable steady states which the
large-scale growth rate is positive, i.e. steady states that
exhibit instability to large-scale perturbation: 11% for
algebraic spectra and 13% for exponential spectra.
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Further Work
I Perform more runs

I Further exploration of physical parameters
I Explore the role of convection

I Analytics
I Perform expansions for different boundary conditions
I Generalisation of expansion to higher orders
I Include rotation

I Codes
I Generalise the spectral package GOOPS:

I consider different basis of spectral function to support
different geometries and boundary conditions

I provide a more STL-like interface
I Generalise the MHDC3DL code to solve the full

non-linear problem
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