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Phenomenology of particles in turbulence

SliceSlice  ~512x512x8 ~512x512x8 ηη from DNS from DNS
heavyheavy particles  particles ρρpp  >> >> ρρff  (red)(red) and  and lightlight particles  particles ρρpp  << << ρρff  ((blue)blue)

1) Ejection/injection of heavy/light particles from/in vortices1) Ejection/injection of heavy/light particles from/in vortices
preferential concentrationspreferential concentrations  Maxey (1987), Squires & Eaton (1991),  Fessler Eaton (1994)

2) Finite response time to fluid fluctuations (smoothing of fast time scales)2) Finite response time to fluid fluctuations (smoothing of fast time scales)

Stokes number St = 0.1Stokes number St = 0.1 St = 1St = 1 St = 4.1St = 4.1
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Objective

study statistical properties and 

correlation with the carrier flow structures 

of inertial particle clusters 

for a wide range of density ratios and response times 

quantitative measure 

of the effects of particle inertia 

in turbulent flows.
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Numerical Simulations

- Homogeneous isotropic turbulence

- Large scale forcing

- Periodic cubic domain

-  Reλ≈78  (L3 = 1283)

-  Reλ≈180  (L3 = 5123)

Navier-Stokes

Incompressible flow field u 
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Particle’s equation of motion

Particles with           (Kolmogorov scale)

Particle Reynolds:
Dilute suspensions (no collisions),
no gravity

!<<a

1vRe
a

<<= !a
a

(essentially: Maxey & Riley Phys. Fluids 1983, T.R.Auton et al. JFM 1988)

2a
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Numerical simulations: particles

Particles tracked for 10s Teddy 
Database: particle’s position, velocity, acceleration, 

fluid velocity and gradients at particle position

Total number of particles: Ntot ≈ 50•106:
Grouped in ~500 types on the β-St parameter-space:

fluid tracer
β=1 St=0
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Outline

(i) Clusters dependence on β and St (small-scale features): 

- attractor (Kaplan-Yorke) dimension DKY 

- correlation dimension D2

     - Minkowski functionals.

(ii) Clusters correlation to local flow properties

- particle concentration conditioned to local flow topology.
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(i) Kaplan-Yorke dimension: DKY

As in Bec Phys. Fluids (2003), Bec JFM (2005), Bec et al. Phys. Fluids (2006)

Particle equations of motion
defines a dissipative dynamical system

Attractor’s dimension in the (x,v) space:
Kaplan Yorke dimension DKY

DKY

6 Lyapunov exponents computed by tracking

stretching
rates

Standard ortho-normalization
 Gram-Schmidt procedure adopted
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Kaplan-Yorke dimension
Balance between contraction and expansion

DKY

DKY

HeavyHeavy
min. atmin. at  
StSt≈≈0.5, D0.5, DKY KY ≈≈2.62.6

LightLight
min atmin at
StSt≈≈1, 1, DDKY KY ≈≈1.41.4

DKY =3 ± 0.01

St
β
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Projection of DKY

>3

<3
<3 <2

DKY =3 ± 0.01 β St

Close to fractal dimension of
 vortex filaments in turbulence
(Moisy&Jimenez JFM 04)

Light Light min at Stmin at St≈≈11

HeavyHeavy  minmin  at Stat St≈≈.5.5

St

Horizontal projection Vertical projection
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Correlation dimension D2

P2(r) Probability to find a couple of particle whose distance is below r.

At    r << η     P2(r) = A r
D2

r

Same features
as DKY

More accessible
in experiments

fractal dimension hierarchy: D2 ≤ D1 = DKY
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Morphological analysis of point clouds

Put balls                   with radius r around each
particle i

Let r increase

Measure total volume, surface, mean
curvature and Euler characteristic of the
emerging structure

-

-

-

Minkowski functionals provide complete morphological
characterization of point cloud!
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Visualization of Ar

radius = 0.5 η

radius = 3 η

radius = 10 η

2•104 particles with β=3 and St=1 

r
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Minkowski functionals Vµ(r) in 3D

χ    Euler characteristic

H   Mean curvature

A   Surface

V   Volume

geometric quantity

χ3

H/(3 π)2

A/61

V0

Vµ(r)µ

In collaboration with M. Kerscher (Munich University, Dept. Mathematics)

see also: Mecke, K.R., Buchert, T. and Wagner, H. (1994). Robust morphological measures for
large scale structure in the universe. Astron.  Astrophys., 288, 697-704.
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Comparison of three extreme cases

β = 0, heavy

β = 1, tracer

β = 3, bubble

Poisson distribution

St=0.6

tracerbubble heavy

105 particles
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Bubbles β=3, St=0.6 and  Reλ=78
105

particles
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Heavy particles β=0, St=0.6 and  Reλ=78
105

particles
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Volume V0(r)

heavy

passive

(Poisson)

bubble

space-filling

space-filling

less fast due to

overlaps:

remote clusters
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Surface V1(r)

heavy

passive

(Poisson)

bubble

Smaller maximal

surface due to

clustering

Mainly isolated 

balls

space-filling:

no surface left
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Mean curvature V2(r)

heavy

passive

(Poisson)

bubble

Less convex:

sheet type

clustering

Convex structure

Concave: holes

Never concave:

filaments
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Euler characteristics V3(r)

heavy

passive

(Poisson)

bubble

No tunnels:

filaments

Isolated balls

tunnels form

tunnels get 

blocked

no cavities form: sheets

Dramatic decrease:

strong clustering

V3 = χ = n. components - n. tunnels + n.cavities
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(ii)  Concentration conditioned to local flow geometry

Hyperbolic        non-hyperbolic

Eigenvalues of the strain matrix

Phyper = < N(Δ<0) / Ntot > 

Discriminator:

(see Chong, Perry, Cantwell PF 1990)
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Conditioned concentration: 1-Phyper

Probability to be in non-hyperbolic regionsProbability to be in non-hyperbolic regions

segregation of species
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Conclusions

Summary:
Small-scale clustering (dissipative range) quantified by:

DKY, D2 and Minkowski functionals.
Concentration conditioned to local flow geometry

(-> segregation) quantified by: Phyper

Ongoing and future work:
- Quantifying clustering at larger scales (inertial-range).
- Investigate spatial statistics of dilute bi-disperse solutions.
- Trapping/ejection signature in temporal velocity statistics
- Trapping/ejection signature in acceleration statistics.
- Modeling needed.


