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INERTIAL PARTICLES: MODEL AND LIMITATIONS

Model:

I given incompressible surrounding flow

I single spherical particle

I size smaller than (smallest active) scale of flow

I low relative Reynolds number

I Stokes’ viscous drag

I presence of gravity and diffusivity

Limitations:

I no interaction with boundaries or other particles

I neglection of Basset, Faxen, Oseen, Saffman correction terms

I effects of non-sphericity, rotationality and high velocity?
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INERTIAL PARTICLES: EQUATIONS


ẋ = v + βu[x(t), t]

v̇ = −v − (1− β)u[x(t), t]

τ
+

√
2κ

τ
η(t) + (1− β)g

Adimensional numbers:

I β ≡ 3ρf

ρf + 2ρp

β 0

←→ 1 ←→ 3

particles: heavy

tracer light

I Stokes: St =
τ

L/U
(inertia)

I Péclet: Pe =
LU

κ
(diffusivity)−1

I Froude: Fr =
U√
gL

(gravity)−1/2
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ẋ = v + βu[x(t), t]

v̇ = −v − (1− β)u[x(t), t]

τ
+

√
2κ

τ
η(t) + (1− β)g

Adimensional numbers:

I β ≡ 3ρf

ρf + 2ρp

β 0

←→ 1 ←→ 3

particles: heavy

tracer light

I Stokes: St =
τ

L/U
(inertia)

I Péclet: Pe =
LU

κ
(diffusivity)−1

I Froude: Fr =
U√
gL

(gravity)−1/2



INERTIAL PARTICLES: EQUATIONS


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CONTINUUM VS. DYNAMICAL APPROACH

I Continuum description:

v(x, t) = (1−β)u(x, t)+ τ(1−β)[g− (∂tu+u ·∂u)]+O(τ2)

I Fokker–Planck equation for phase-space density ρ(x, v, t):

∂

∂t
ρ =

∂

∂xi
(. . . ρ) +

∂

∂vj
(. . . ρ) +

κ

τ2

∂2

∂vk∂vk
ρ

≡ −Lρ

I Multiscale expansion:
slow variables X ≡ εx & T ≡ ε2t independent
(covelocity exclusively fast)

ρ(x,X, v, t,T ) =
∞∑
l=0

εlρl
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MULTISCALE EXPANSION

I Order ε0:

(∂t+L)ρ0 = 0 =⇒ ρ0 = p(x, v, t)P(X,T ) =⇒ (∂t+L)p = 0

I Order ε1:

terminal velocity w = (1− β)gτ + 〈u(x, t)〉p(x,v,t)

w∗ = (1− β)gτ =⇒ ∆w =

∫
dxdv dt u(x, t)p(x, v, t)

(solvability condition ⇒ FoR with w = 0)

I Order ε2:
∂

∂T
P = Kij

∂2

∂Xi∂Xj
P{

Kij = 〈vi + βui (x, t)〉qj (x,v,t) (effective diffusivity)

(∂t + L)q = [v + βu(x, t)]p(x, v, t) (auxiliary equation)
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MULTISCALE EXPANSION

I Order ε0:

(∂t+L)ρ0 = 0 =⇒ ρ0 = p(x, v, t)P(X,T ) =⇒ (∂t+L)p = 0

I Order ε1:

terminal velocity w = (1− β)gτ + 〈u(x, t)〉p(x,v,t)
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∫
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(solvability condition ⇒ FoR with w = 0)

I Order ε2:
∂

∂T
P = Kij

∂2

∂Xi∂Xj
P{
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SECOND-QUANTIZATION FORMALISM

I adimensional reformulation of (∂t + L)p = 0:
operator with terms St−1, St−1/2, St0, St1/2

I expansion p(x, v, t) =
∑∞

n=0 Stn/2pn(x, v, t)

I Hermitian reformulation and introduction of vacuum,
creation, annihilation for v

I (∂t + u · ∂ − κ∂2)pn = f (pn−2, pn−4, . . .) with p0 = 1, p1 = 0

I bare terminal velocity w∗ = (1− β)Fr−2St

=⇒ ∆w =
∞∑

m=0

St2+m

∫
dxdt u(x, t)p4+2m(x, t)

=⇒ possibility of variation O(St2) from bare value
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CORRECTION AT ORDER St2

I proportional to gravity (∝ Fr−2)

I same sign for both heavy and light particles (∝ (1− β)2)

=⇒ acceleration in falling and slowdown in rising, or viceversa

I actual presence and sign: dependent on the flow

Numerical examples:

I ABC (3D) or BC (2D) flows

I Gollub flow (2D) with g ‖ −x2

u = (sin(kx1) cos[x2 + sin(ωt)],− cos(kx1) sin[x2 + sin(ωt)]

=⇒ dependence on oscillation and aspect ratio:

ω = 0, k = 1 ←→
{

ω 6= 0, k = 1

ω = 0, k 6= 1
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SINGULAR EXPANSIONS AND DIFFUSIVITY

I Expansion at large St (ballistic case):

singular (white → coloured noise)

I Dependence on diffusivity:

I expansion at large Pe: singular

I expansion at small Pe: O(Pe2) or higher

I special case (stationary Gollub f.): behaviours Pe and Pe3

respectively
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FURTHER DEVELOPMENTS

I Study at large (and intermediate) St and large Pe

I (with P. Olla)
Turbulent, one-dimensional Gaussian flow, at large St
or small Fr (absence of Pe but appearance of Ku):

slowdown in falling for heavy p.

I Study of effective diffusivity
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