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Model:
» given incompressible surrounding flow
» single spherical particle
> size smaller than (smallest active) scale of flow
» low relative Reynolds number
» Stokes’ viscous drag
» presence of gravity and diffusivity
Limitations:
» no interaction with boundaries or other particles
> neglection of Basset, Faxen, Oseen, Saffman correction terms

» effects of non-sphericity, rotationality and high velocity?
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> Stokes: St = L/U (inertia)
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> Froude: Fr = —  (gravity)
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» Continuum description:

v(x,t) = (1—pBu(x,t)+7(1—F)[g — (Oru+u-ou)]+ 0(72)

» Fokker—Planck equation for phase-space density p(x, v, t):
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= —Lp

» Multiscale expansion:
slow variables X = ex & T = €°t independent
(covelocity exclusively fast)
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» adimensional reformulation of (0; + £)p = 0:
operator with terms St~ 1, St_1/2, St9, St1/2

> expansion p(x,v,t) = ", St"2pn(x, v, t)

» Hermitian reformulation and introduction of vacuum,
creation, annihilation for v

> (O; +u-0 — Kk0?)py = f(Pn_2,Pn_a,...) with pg =1, pp =0

> bare terminal velocity w, = (1 — 3)Fr~2St

— Aw = Z St2+m/dx dt U(X, t)p4+2m(x7 t)

m=0

— possibility of variation O(St?) from bare value
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> same sign for both heavy and light particles (x (1 — 3)?)
= acceleration in falling and slowdown in rising, or viceversa

» actual presence and sign: dependent on the flow

Numerical examples:
» ABC (3D) or BC (2D) flows
» Gollub flow (2D) with g || —x2
u = (sin(kx1) cos[x2 + sin(wt)], — cos(kx1) sin[x2 + sin(wt)]
— dependence on oscillation and aspect ratio:
w#0, k=1
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SINGULAR EXPANSIONS AND DIFFUSIVITY

» Expansion at large St (ballistic case):
singular (white — coloured noise)

» Dependence on diffusivity:
> expansion at large Pe: singular
> expansion at small Pe: O(Pe?) or higher

» special case (stationary Gollub f.): behaviours Pe and Pe?
respectively
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» Study at large (and intermediate) St and large Pe

» (with P. Olla)
Turbulent, one-dimensional Gaussian flow, at large St
or small Fr (absence of Pe but appearance of Ku):
slowdown in falling for heavy p.

> Study of effective diffusivity



